Skip to content

Brownian Motion¤

Main module for Brownian motion.

BrownianMotion ¤

Brownian motion describes motion of small particles with stochastic forces applied to them.

The math of Brownian motion can be modeled with Wiener process.

For consistency, we always use \(\mathbf x\) for displacement, and \(t\) for steps. The model we are using is

\[ \begin{align} \mathbf x(t + \mathrm dt) &= \mathbf x(t) + \mathcal{N}(\mu=0, \sigma=\sigma \sqrt{\mathrm d t}) \end{align} \]

References¤

  1. Brownian motion and random walks. [cited 13 Mar 2024]. Available: https://web.mit.edu/8.334/www/grades/projects/projects17/OscarMickelin/brownian.html
  2. Contributors to Wikimedia projects. Brownian motion. In: Wikipedia [Internet]. 22 Jan 2024 [cited 13 Mar 2024]. Available: https://en.wikipedia.org/wiki/Brownian_motion

1D Brownian Motion

The dimsion of our Brownian motion is specified by the dimension of the initial condition.

To simulate a 1D Browian motion, we define the system and initial condition:

system = {
    "sigma": 1,
    "delta_t": 1,
}

initial_condition = {
    "x0": 0
}

The Brownian motion can be simulated using

bm = BrownianMotion(system=system, initial_condition=initial_condition)

bm(n_steps=100)

2D Brownian Motion

To simulate a 2D Browian motion,

system = {
    "sigma": 1,
    "delta_t": 1,
}

initial_condition = {
    "x0": [0, 0]
}

bm = BrownianMotion(system=system, initial_condition=initial_condition)

bm(n_steps=100)

Parameters:

Name Type Description Default
system Mapping[str, float]

the Brownian motion system definition

required
initial_condition Mapping[str, Sequence[float] | ArrayLike] | None

the initial condition for the simulation

None
Source code in hamilflow/models/brownian_motion.py
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
class BrownianMotion:
    r"""Brownian motion describes motion of small particles with stochastic forces applied to them.

    The math of Brownian motion can be modeled
    with Wiener process.

    For consistency, we always use
    $\mathbf x$ for displacement, and
    $t$ for steps. The model we are using is

    $$
    \begin{align}
    \mathbf x(t + \mathrm dt) &= \mathbf x(t) +
    \mathcal{N}(\mu=0, \sigma=\sigma \sqrt{\mathrm d t})
    \end{align}
    $$

    References
    ----------
    1. Brownian motion and random walks. [cited 13 Mar 2024].
        Available: https://web.mit.edu/8.334/www/grades/projects/projects17/OscarMickelin/brownian.html
    2. Contributors to Wikimedia projects. Brownian motion.
        In: Wikipedia [Internet]. 22 Jan 2024 [cited 13 Mar 2024].
        Available: https://en.wikipedia.org/wiki/Brownian_motion


    !!! example "1D Brownian Motion"

        The dimsion of our Brownian motion is specified by
        the dimension of the initial condition.

        To simulate a 1D Browian motion, we define the system and initial condition:

        ```python
        system = {
            "sigma": 1,
            "delta_t": 1,
        }

        initial_condition = {
            "x0": 0
        }
        ```

        The Brownian motion can be simulated using

        ```python
        bm = BrownianMotion(system=system, initial_condition=initial_condition)

        bm(n_steps=100)
        ```

    !!! example "2D Brownian Motion"

        To simulate a 2D Browian motion,

        ```python
        system = {
            "sigma": 1,
            "delta_t": 1,
        }

        initial_condition = {
            "x0": [0, 0]
        }

        bm = BrownianMotion(system=system, initial_condition=initial_condition)

        bm(n_steps=100)
        ```

    :param system: the Brownian motion system definition
    :param initial_condition: the initial condition for the simulation

    """

    def __init__(
        self,
        system: Mapping[str, float],
        initial_condition: (
            Mapping[str, "Sequence[float] | npt.ArrayLike"] | None
        ) = None,
    ) -> None:
        initial_condition = initial_condition or {}
        self.system = BrownianMotionSystem.model_validate(system)
        self.initial_condition = BrownianMotionIC.model_validate(initial_condition)

    @property
    def dim(self) -> int:
        """Dimension of the Brownian motion."""
        return np.asarray(self.initial_condition.x0).size

    @property
    def _axis_names(self) -> list[str]:
        return [f"x_{i}" for i in range(self.dim)]

    def _trajectory(self, n_new_steps: int, seed: int) -> "npt.NDArray[np.float64]":
        """Give the trajectory of the particle.

        We first compute the delta displacement in each step.
        With the displacement at each step, we perform a cumsum
        including the initial coordinate to get the displacement at each step.

        :param n_new_steps: number of new steps to simulate, excluding the initial step.
        :param seed: seed for the random generator.
        """
        step_history = sp.stats.norm.rvs(
            size=(n_new_steps, self.dim) if self.dim > 1 else n_new_steps,
            scale=self.system.gaussian_scale,
            random_state=np.random.RandomState(seed=seed),
        )

        step_history = np.concatenate(
            (np.expand_dims(self.initial_condition.x0, axis=0), step_history),
        )

        trajectory = np.cumsum(step_history, axis=0)

        return trajectory

    def generate_from(self, n_steps: int, seed: int = 42) -> pd.DataFrame:
        """Generate data from a set of interpretable params for this model.

        :param n_steps: total number of steps to be simulated, including the inital step.
        :param seed: random generator seed for the stochastic process.
            Use it to reproduce results.
        """
        time_steps = np.arange(0, n_steps) * self.system.delta_t

        return self(t=time_steps, seed=seed)

    def __call__(self, t: TypeTime, seed: int = 42) -> pd.DataFrame:
        """Simulate the coordinates of the particle.

        :param t: the time sequence to be used to generate data, 1-D array like
        :param seed: random generator seed for the stochastic process.
            Use it to reproduce results.
        """
        n_steps = np.array(t).size
        trajectory = self._trajectory(n_new_steps=n_steps - 1, seed=seed)

        df = pd.DataFrame(trajectory, columns=self._axis_names)
        df["t"] = t

        return df

dim: int property ¤

Dimension of the Brownian motion.

__call__(t, seed=42) ¤

Simulate the coordinates of the particle.

Parameters:

Name Type Description Default
t TypeTime

the time sequence to be used to generate data, 1-D array like

required
seed int

random generator seed for the stochastic process. Use it to reproduce results.

42
Source code in hamilflow/models/brownian_motion.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def __call__(self, t: TypeTime, seed: int = 42) -> pd.DataFrame:
    """Simulate the coordinates of the particle.

    :param t: the time sequence to be used to generate data, 1-D array like
    :param seed: random generator seed for the stochastic process.
        Use it to reproduce results.
    """
    n_steps = np.array(t).size
    trajectory = self._trajectory(n_new_steps=n_steps - 1, seed=seed)

    df = pd.DataFrame(trajectory, columns=self._axis_names)
    df["t"] = t

    return df

generate_from(n_steps, seed=42) ¤

Generate data from a set of interpretable params for this model.

Parameters:

Name Type Description Default
n_steps int

total number of steps to be simulated, including the inital step.

required
seed int

random generator seed for the stochastic process. Use it to reproduce results.

42
Source code in hamilflow/models/brownian_motion.py
194
195
196
197
198
199
200
201
202
203
def generate_from(self, n_steps: int, seed: int = 42) -> pd.DataFrame:
    """Generate data from a set of interpretable params for this model.

    :param n_steps: total number of steps to be simulated, including the inital step.
    :param seed: random generator seed for the stochastic process.
        Use it to reproduce results.
    """
    time_steps = np.arange(0, n_steps) * self.system.delta_t

    return self(t=time_steps, seed=seed)

BrownianMotionIC ¤

Bases: BaseModel

The initial condition for a Brownian motion.

Attributes:

Name Type Description
x0 float | Sequence[float]

initial displacement of the particle, the diminsion of this initial condition determines the dimension of the model too.

Source code in hamilflow/models/brownian_motion.py
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class BrownianMotionIC(BaseModel):
    """The initial condition for a Brownian motion.

    :cvar x0: initial displacement of the particle,
        the diminsion of this initial condition determines
        the dimension of the model too.
    """

    x0: float | Sequence[float] = Field(default=1.0)

    @field_validator("x0")
    @classmethod
    def _check_x0_types(cls, v: float | Sequence[float]) -> float | Sequence[float]:
        if not isinstance(v, float | int | Sequence):
            # TODO I do not think this raise can be reached
            msg = f"Value of x0 should be int/float/list of int/float: {v=}"
            raise TypeError(msg)

        return v

BrownianMotionSystem ¤

Bases: BaseModel

Definition of the Brownian Motion system.

For consistency, we always use \(\mathbf x\) for displacement, and \(t\) for steps. The model we are using is

\[ \begin{align} \mathbf x(t + \mathrm dt) &= \mathbf x(t) + \mathcal{N}(\mu=0, \sigma=\sigma \sqrt{\mathrm d t}) \end{align} \]

References¤

  1. Brownian motion and random walks. [cited 13 Mar 2024]. Available: https://web.mit.edu/8.334/www/grades/projects/projects17/OscarMickelin/brownian.html
  2. Contributors to Wikimedia projects. Brownian motion. In: Wikipedia [Internet]. 22 Jan 2024 [cited 13 Mar 2024]. Available: https://en.wikipedia.org/wiki/Brownian_motion

Attributes:

Name Type Description
sigma float

base standard deviation to be used to compute the variance

delta_t float

time granunality of the motion

Source code in hamilflow/models/brownian_motion.py
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class BrownianMotionSystem(BaseModel):
    r"""Definition of the Brownian Motion system.

    For consistency, we always use
    $\mathbf x$ for displacement, and
    $t$ for steps. The model we are using is

    $$
    \begin{align}
    \mathbf x(t + \mathrm dt) &= \mathbf x(t) +
    \mathcal{N}(\mu=0, \sigma=\sigma \sqrt{\mathrm d t})
    \end{align}
    $$

    References
    ----------
    1. Brownian motion and random walks. [cited 13 Mar 2024].
        Available: https://web.mit.edu/8.334/www/grades/projects/projects17/OscarMickelin/brownian.html
    2. Contributors to Wikimedia projects. Brownian motion.
        In: Wikipedia [Internet]. 22 Jan 2024 [cited 13 Mar 2024].
        Available: https://en.wikipedia.org/wiki/Brownian_motion

    :cvar sigma: base standard deviation
        to be used to compute the variance
    :cvar delta_t: time granunality of the motion

    """

    sigma: float = Field(ge=0.0)
    delta_t: float = Field(ge=0.0, default=1.0)

    @computed_field  # type: ignore[misc]
    @cached_property
    def gaussian_scale(self) -> float:
        """The scale (standard deviation) of the Gaussian term in Brownian motion."""
        return self.sigma**2 * self.delta_t

gaussian_scale: float cached property ¤

The scale (standard deviation) of the Gaussian term in Brownian motion.