Brownian Motion¤
Main module for Brownian motion.
BrownianMotion
¤
Brownian motion describes motion of small particles with stochastic forces applied to them.
The math of Brownian motion can be modeled with Wiener process.
For consistency, we always use \(\mathbf x\) for displacement, and \(t\) for steps. The model we are using is
References¤
- Brownian motion and random walks. [cited 13 Mar 2024]. Available: https://web.mit.edu/8.334/www/grades/projects/projects17/OscarMickelin/brownian.html
- Contributors to Wikimedia projects. Brownian motion. In: Wikipedia [Internet]. 22 Jan 2024 [cited 13 Mar 2024]. Available: https://en.wikipedia.org/wiki/Brownian_motion
1D Brownian Motion
The dimsion of our Brownian motion is specified by the dimension of the initial condition.
To simulate a 1D Browian motion, we define the system and initial condition:
system = {
"sigma": 1,
"delta_t": 1,
}
initial_condition = {
"x0": 0
}
The Brownian motion can be simulated using
bm = BrownianMotion(system=system, initial_condition=initial_condition)
bm(n_steps=100)
2D Brownian Motion
To simulate a 2D Browian motion,
system = {
"sigma": 1,
"delta_t": 1,
}
initial_condition = {
"x0": [0, 0]
}
bm = BrownianMotion(system=system, initial_condition=initial_condition)
bm(n_steps=100)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
system |
Mapping[str, float]
|
the Brownian motion system definition |
required |
initial_condition |
Mapping[str, Sequence[float] | ArrayLike] | None
|
the initial condition for the simulation |
None
|
Source code in hamilflow/models/brownian_motion.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
dim: int
property
¤
Dimension of the Brownian motion.
__call__(t, seed=42)
¤
Simulate the coordinates of the particle.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
t |
TypeTime
|
the time sequence to be used to generate data, 1-D array like |
required |
seed |
int
|
random generator seed for the stochastic process. Use it to reproduce results. |
42
|
Source code in hamilflow/models/brownian_motion.py
205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
generate_from(n_steps, seed=42)
¤
Generate data from a set of interpretable params for this model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_steps |
int
|
total number of steps to be simulated, including the inital step. |
required |
seed |
int
|
random generator seed for the stochastic process. Use it to reproduce results. |
42
|
Source code in hamilflow/models/brownian_motion.py
194 195 196 197 198 199 200 201 202 203 |
|
BrownianMotionIC
¤
Bases: BaseModel
The initial condition for a Brownian motion.
Attributes:
Name | Type | Description |
---|---|---|
x0 |
float | Sequence[float]
|
initial displacement of the particle, the diminsion of this initial condition determines the dimension of the model too. |
Source code in hamilflow/models/brownian_motion.py
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
|
BrownianMotionSystem
¤
Bases: BaseModel
Definition of the Brownian Motion system.
For consistency, we always use \(\mathbf x\) for displacement, and \(t\) for steps. The model we are using is
References¤
- Brownian motion and random walks. [cited 13 Mar 2024]. Available: https://web.mit.edu/8.334/www/grades/projects/projects17/OscarMickelin/brownian.html
- Contributors to Wikimedia projects. Brownian motion. In: Wikipedia [Internet]. 22 Jan 2024 [cited 13 Mar 2024]. Available: https://en.wikipedia.org/wiki/Brownian_motion
Attributes:
Name | Type | Description |
---|---|---|
sigma |
float
|
base standard deviation to be used to compute the variance |
delta_t |
float
|
time granunality of the motion |
Source code in hamilflow/models/brownian_motion.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
|
gaussian_scale: float
cached
property
¤
The scale (standard deviation) of the Gaussian term in Brownian motion.