Harmonic Oscillator¤
Main module for undamped and damped hamornic oscillators.
ComplexSimpleHarmonicOscillator
¤
Generate time series data for a complex simple harmonic oscillator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
system |
Mapping[str, float]
|
all the params that defines the complex harmonic oscillator. |
required |
initial_condition |
Mapping[str, tuple[float, float]]
|
the initial condition of the complex harmonic oscillator. |
required |
Source code in hamilflow/models/harmonic_oscillator.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
|
definition: dict[str, dict[str, float | tuple[float, float]]]
cached
property
¤
Model params and initial conditions defined as a dictionary.
__call__(t)
¤
Generate time series data for the harmonic oscillator.
Returns a list of floats representing the displacement at each time.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
t |
Sequence[float] | ArrayLike
|
time(s). |
required |
Source code in hamilflow/models/harmonic_oscillator.py
389 390 391 392 393 394 395 396 397 398 399 |
|
ComplexSimpleHarmonicOscillatorIC
¤
Bases: BaseModel
The initial condition for a complex harmonic oscillator.
Attributes:
Name | Type | Description |
---|---|---|
x0 |
tuple[float, float]
|
the initial displacements |
phi |
tuple[float, float]
|
initial phases |
Source code in hamilflow/models/harmonic_oscillator.py
333 334 335 336 337 338 339 340 341 |
|
DampedHarmonicOscillator
¤
Bases: HarmonicOscillatorBase
Generate time series data for a damped harmonic oscillator.
The equation for a general un-driven harmonic oscillator is12
where \(x\) is the displacement, \(\omega\) is the angular frequency of an undamped oscillator (\(\zeta=0\)), and \(\zeta\) is the damping ratio.
The solution to the above harmonic oscillator is
where
To use this generator,
params = {"omega": omega, "zeta"=0.2}
ho = DampedHarmonicOscillator(params=params)
df = ho(n_periods=1, n_samples_per_period=10)
df
will be a pandas dataframe with two columns: t
and x
.
-
Contributors to Wikimedia projects. Harmonic oscillator. In: Wikipedia [Internet]. 18 Feb 2024 [cited 20 Feb 2024]. Available: https://en.wikipedia.org/wiki/Harmonic_oscillator#Damped_harmonic_oscillator ↩
-
Libretexts. 5.3: General Solution for the Damped Harmonic Oscillator. Libretexts. 13 Apr 2021. Available: https://t.ly/cWTIo. Accessed 20 Feb 2024. ↩
Parameters:
Name | Type | Description | Default |
---|---|---|---|
system |
Mapping[str, float]
|
all the params that defines the harmonic oscillator. |
required |
initial_condition |
Mapping[str, float] | None
|
the initial condition of the harmonic oscillator. |
None
|
Source code in hamilflow/models/harmonic_oscillator.py
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
|
HarmonicOscillatorBase
¤
Bases: ABC
Base class to generate time series data for a harmonic oscillator.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
system |
Mapping[str, float]
|
all the params that defines the harmonic oscillator. |
required |
initial_condition |
Mapping[str, float] | None
|
the initial condition of the harmonic oscillator. |
None
|
Source code in hamilflow/models/harmonic_oscillator.py
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
definition: dict[str, dict[str, float]]
cached
property
¤
Model params and initial conditions defined as a dictionary.
__call__(n_periods, n_samples_per_period)
¤
Generate time series data for the harmonic oscillator.
Returns a list of floats representing the displacement at each time step.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_periods |
int
|
Number of periods to generate. |
required |
n_samples_per_period |
int
|
Number of samples per period. |
required |
Source code in hamilflow/models/harmonic_oscillator.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
HarmonicOscillatorIC
¤
Bases: BaseModel
The initial condition for a harmonic oscillator.
Attributes:
Name | Type | Description |
---|---|---|
x0 |
float
|
the initial displacement |
v0 |
float
|
the initial velocity |
phi |
float
|
initial phase |
Source code in hamilflow/models/harmonic_oscillator.py
61 62 63 64 65 66 67 68 69 70 71 |
|
HarmonicOscillatorSystem
¤
Bases: BaseModel
The params for the harmonic oscillator.
Attributes:
Name | Type | Description |
---|---|---|
omega |
float
|
angular frequency of the harmonic oscillator |
zeta |
float
|
damping ratio |
Source code in hamilflow/models/harmonic_oscillator.py
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
SimpleHarmonicOscillator
¤
Bases: HarmonicOscillatorBase
Generate time series data for a simple harmonic oscillator.
In a one dimensional world, a mass \(m\), driven by a force \(F=-kx\), is described as
The mass behaves like a simple harmonic oscillator.
In general, the solution to a simple harmonic oscillator is
where \(\omega\) is the angular frequency, \(\phi\) is the initial phase, and \(A\) is the amplitude.
To use this generator,
params = {"omega": omega}
ho = SimpleHarmonicOscillator(params=params)
df = ho(n_periods=1, n_samples_per_period=10)
df
will be a pandas dataframe with two columns: t
and x
.
Source code in hamilflow/models/harmonic_oscillator.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
|