Skip to content

Harmonic Oscillator¤

Main module for undamped and damped hamornic oscillators.

ComplexSimpleHarmonicOscillator ¤

Generate time series data for a complex simple harmonic oscillator.

Parameters:

Name Type Description Default
system Mapping[str, float]

all the params that defines the complex harmonic oscillator.

required
initial_condition Mapping[str, tuple[float, float]]

the initial condition of the complex harmonic oscillator.

required
Source code in hamilflow/models/harmonic_oscillator.py
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
class ComplexSimpleHarmonicOscillator:
    r"""Generate time series data for a complex simple harmonic oscillator.

    :param system: all the params that defines the complex harmonic oscillator.
    :param initial_condition: the initial condition of the complex harmonic oscillator.
    """

    def __init__(
        self,
        system: Mapping[str, float],
        initial_condition: Mapping[str, tuple[float, float]],
    ) -> None:
        self.system = HarmonicOscillatorSystem.model_validate(system)
        self.initial_condition = ComplexSimpleHarmonicOscillatorIC.model_validate(
            initial_condition,
        )
        if self.system.type != "simple":
            msg = f"System is not a Simple Harmonic Oscillator: {self.system}"
            raise ValueError(
                msg,
            )

    @cached_property
    def definition(
        self,
    ) -> dict[str, dict[str, float | tuple[float, float]]]:
        """Model params and initial conditions defined as a dictionary."""
        return {
            "system": self.system.model_dump(),
            "initial_condition": self.initial_condition.model_dump(),
        }

    def _z(self, t: "Sequence[float] | npt.ArrayLike") -> npt.ArrayLike:
        r"""Solution to complex simple harmonic oscillators.

        $$
        x(t) = x_+ \exp(-\mathbb{i} (\omega t + \phi_+)) + x_- \exp(+\mathbb{i} (\omega t + \phi_-)).
        $$
        """
        t = np.asarray(t)
        omega = self.system.omega
        x0, phi = self.initial_condition.x0, self.initial_condition.phi
        phases = -omega * t - phi[0], omega * t + phi[1]
        return x0[0] * np.exp(1j * phases[0]) + x0[1] * np.exp(1j * phases[1])

    def __call__(self, t: "Sequence[float] | npt.ArrayLike") -> pd.DataFrame:
        """Generate time series data for the harmonic oscillator.

        Returns a list of floats representing the displacement at each time.

        :param t: time(s).
        """
        t = np.asarray(t)
        data = self._z(t)

        return pd.DataFrame({"t": t, "z": data})

definition: dict[str, dict[str, float | tuple[float, float]]] cached property ¤

Model params and initial conditions defined as a dictionary.

__call__(t) ¤

Generate time series data for the harmonic oscillator.

Returns a list of floats representing the displacement at each time.

Parameters:

Name Type Description Default
t Sequence[float] | ArrayLike

time(s).

required
Source code in hamilflow/models/harmonic_oscillator.py
389
390
391
392
393
394
395
396
397
398
399
def __call__(self, t: "Sequence[float] | npt.ArrayLike") -> pd.DataFrame:
    """Generate time series data for the harmonic oscillator.

    Returns a list of floats representing the displacement at each time.

    :param t: time(s).
    """
    t = np.asarray(t)
    data = self._z(t)

    return pd.DataFrame({"t": t, "z": data})

ComplexSimpleHarmonicOscillatorIC ¤

Bases: BaseModel

The initial condition for a complex harmonic oscillator.

Attributes:

Name Type Description
x0 tuple[float, float]

the initial displacements

phi tuple[float, float]

initial phases

Source code in hamilflow/models/harmonic_oscillator.py
333
334
335
336
337
338
339
340
341
class ComplexSimpleHarmonicOscillatorIC(BaseModel):
    """The initial condition for a complex harmonic oscillator.

    :cvar x0: the initial displacements
    :cvar phi: initial phases
    """

    x0: tuple[float, float] = Field()
    phi: tuple[float, float] = Field(default=(0, 0))

DampedHarmonicOscillator ¤

Bases: HarmonicOscillatorBase

Generate time series data for a damped harmonic oscillator.

The equation for a general un-driven harmonic oscillator is12

\[ \frac{\mathrm d x^2}{\mathrm d t^2} + 2\zeta \omega \frac{\mathrm d x}{\mathrm dt} + \omega^2 x = 0, \]

where \(x\) is the displacement, \(\omega\) is the angular frequency of an undamped oscillator (\(\zeta=0\)), and \(\zeta\) is the damping ratio.

The solution to the above harmonic oscillator is

\[ x(t) = \left( x_0 \cos(\Omega t) + \frac{\zeta \omega x_0 + v_0}{\Omega} \sin(\Omega t) \right) e^{-\zeta \omega t}, \]

where

\[ \Omega = \omega\sqrt{ 1 - \zeta^2}. \]

To use this generator,

params = {"omega": omega, "zeta"=0.2}

ho = DampedHarmonicOscillator(params=params)

df = ho(n_periods=1, n_samples_per_period=10)

df will be a pandas dataframe with two columns: t and x.


  1. Contributors to Wikimedia projects. Harmonic oscillator. In: Wikipedia [Internet]. 18 Feb 2024 [cited 20 Feb 2024]. Available: https://en.wikipedia.org/wiki/Harmonic_oscillator#Damped_harmonic_oscillator 

  2. Libretexts. 5.3: General Solution for the Damped Harmonic Oscillator. Libretexts. 13 Apr 2021. Available: https://t.ly/cWTIo. Accessed 20 Feb 2024. 

Parameters:

Name Type Description Default
system Mapping[str, float]

all the params that defines the harmonic oscillator.

required
initial_condition Mapping[str, float] | None

the initial condition of the harmonic oscillator.

None
Source code in hamilflow/models/harmonic_oscillator.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
class DampedHarmonicOscillator(HarmonicOscillatorBase):
    r"""Generate time series data for a [damped harmonic oscillator](https://en.wikipedia.org/wiki/Harmonic_oscillator).

    The equation for a general un-driven harmonic oscillator is[^wiki_ho][^libretext_ho]

    $$
    \frac{\mathrm d x^2}{\mathrm d t^2} + 2\zeta \omega \frac{\mathrm d x}{\mathrm dt} + \omega^2 x = 0,
    $$

    where $x$ is the displacement, $\omega$ is the angular frequency of an undamped oscillator ($\zeta=0$),
    and $\zeta$ is the damping ratio.

    [^wiki_ho]: Contributors to Wikimedia projects. Harmonic oscillator.
                In: Wikipedia [Internet]. 18 Feb 2024 [cited 20 Feb 2024].
                Available: https://en.wikipedia.org/wiki/Harmonic_oscillator#Damped_harmonic_oscillator

    [^libretext_ho]: Libretexts. 5.3: General Solution for the Damped Harmonic Oscillator. Libretexts. 13 Apr 2021.
                    Available: https://t.ly/cWTIo. Accessed 20 Feb 2024.


    The solution to the above harmonic oscillator is

    $$
    x(t) = \left( x_0 \cos(\Omega t) + \frac{\zeta \omega x_0 + v_0}{\Omega} \sin(\Omega t) \right)
        e^{-\zeta \omega t},
    $$

    where

    $$
    \Omega = \omega\sqrt{ 1 - \zeta^2}.
    $$

    To use this generator,

    ```python
    params = {"omega": omega, "zeta"=0.2}

    ho = DampedHarmonicOscillator(params=params)

    df = ho(n_periods=1, n_samples_per_period=10)
    ```

    `df` will be a pandas dataframe with two columns: `t` and `x`.

    :param system: all the params that defines the harmonic oscillator.
    :param initial_condition: the initial condition of the harmonic oscillator.
    """

    def __init__(
        self,
        system: Mapping[str, float],
        initial_condition: Mapping[str, float] | None = None,
    ) -> None:
        super().__init__(system, initial_condition)
        if self.system.type == "simple":
            msg = (
                f"System is not a Damped Harmonic Oscillator: {self.system}\n"
                f"This is a simple harmonic oscillator, use `SimpleHarmonicOscillator`."
            )
            raise ValueError(
                msg,
            )

    def _x_under_damped(self, t: "Sequence[float] | npt.ArrayLike") -> npt.ArrayLike:
        r"""Solution to under damped harmonic oscillators.

        $$
        x(t) = \left( x_0 \cos(\Omega t) + \frac{\zeta \omega x_0 + v_0}{\Omega} \sin(\Omega t) \right)
        e^{-\zeta \omega t},
        $$

        where

        $$
        \Omega = \omega\sqrt{ 1 - \zeta^2}.
        $$
        """
        t = np.asarray(t)
        omega_damp = self.system.omega * np.sqrt(1 - self.system.zeta)
        return (
            self.initial_condition.x0 * np.cos(omega_damp * t)
            + (
                self.system.zeta * self.system.omega * self.initial_condition.x0
                + self.initial_condition.v0
            )
            / omega_damp
            * np.sin(omega_damp * t)
        ) * np.exp(-self.system.zeta * self.system.omega * t)

    def _x_critical_damped(self, t: "Sequence[float] | npt.ArrayLike") -> npt.ArrayLike:
        r"""Solution to critical damped harmonic oscillators.

        $$
        x(t) = \left( x_0 \cos(\Omega t) + \frac{\zeta \omega x_0 + v_0}{\Omega} \sin(\Omega t) \right)
        e^{-\zeta \omega t},
        $$

        where

        $$
        \Omega = \omega\sqrt{ 1 - \zeta^2}.
        $$
        """
        t = np.asarray(t)
        return self.initial_condition.x0 * np.exp(
            -self.system.zeta * self.system.omega * t,
        )

    def _x_over_damped(self, t: "Sequence[float] | npt.ArrayLike") -> npt.ArrayLike:
        r"""Solution to over harmonic oscillators.

        $$
        x(t) = \left( x_0 \cosh(\Gamma t) + \frac{\zeta \omega x_0 + v_0}{\Gamma} \sinh(\Gamma t) \right)
        e^{-\zeta \omega t},
        $$

        where

        $$
        \Gamma = \omega\sqrt{ \zeta^2 - 1 }.
        $$
        """
        t = np.asarray(t)
        gamma_damp = self.system.omega * np.sqrt(self.system.zeta - 1)

        return (
            self.initial_condition.x0 * np.cosh(gamma_damp * t)
            + (
                self.system.zeta * self.system.omega * self.initial_condition.x0
                + self.initial_condition.v0
            )
            / gamma_damp
            * np.sinh(gamma_damp * t)
        ) * np.exp(-self.system.zeta * self.system.omega * t)

    def _x(self, t: "Sequence[float] | npt.ArrayLike") -> npt.ArrayLike:
        r"""Solution to damped harmonic oscillators."""
        t = np.asarray(t)
        if self.system.type == "under_damped":
            x = self._x_under_damped(t)
        elif self.system.type == "over_damped":
            x = self._x_over_damped(t)
        elif self.system.type == "critical_damped":
            x = self._x_critical_damped(t)
        else:
            msg = f"System type is not damped harmonic oscillator: {self.system.type}"
            raise ValueError(
                msg,
            )

        return x

HarmonicOscillatorBase ¤

Bases: ABC

Base class to generate time series data for a harmonic oscillator.

Parameters:

Name Type Description Default
system Mapping[str, float]

all the params that defines the harmonic oscillator.

required
initial_condition Mapping[str, float] | None

the initial condition of the harmonic oscillator.

None
Source code in hamilflow/models/harmonic_oscillator.py
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class HarmonicOscillatorBase(ABC):
    r"""Base class to generate time series data for a [harmonic oscillator](https://en.wikipedia.org/wiki/Harmonic_oscillator).

    :param system: all the params that defines the harmonic oscillator.
    :param initial_condition: the initial condition of the harmonic oscillator.
    """

    def __init__(
        self,
        system: Mapping[str, float],
        initial_condition: Mapping[str, float] | None = None,
    ) -> None:
        initial_condition = initial_condition or {}
        self.system = HarmonicOscillatorSystem.model_validate(system)
        self.initial_condition = HarmonicOscillatorIC.model_validate(initial_condition)

    @cached_property
    def definition(self) -> dict[str, dict[str, float]]:
        """Model params and initial conditions defined as a dictionary."""
        return {
            "system": self.system.model_dump(),
            "initial_condition": self.initial_condition.model_dump(),
        }

    @abstractmethod
    def _x(self, t: "Sequence[float] | npt.ArrayLike") -> npt.ArrayLike:
        r"""Solution to simple harmonic oscillators."""
        ...

    def __call__(self, n_periods: int, n_samples_per_period: int) -> pd.DataFrame:
        """Generate time series data for the harmonic oscillator.

        Returns a list of floats representing the displacement at each time step.

        :param n_periods: Number of periods to generate.
        :param n_samples_per_period: Number of samples per period.
        """
        time_delta = self.system.period / n_samples_per_period
        time_steps = np.arange(0, n_periods * n_samples_per_period) * time_delta

        data = self._x(time_steps)

        return pd.DataFrame({"t": time_steps, "x": data})

definition: dict[str, dict[str, float]] cached property ¤

Model params and initial conditions defined as a dictionary.

__call__(n_periods, n_samples_per_period) ¤

Generate time series data for the harmonic oscillator.

Returns a list of floats representing the displacement at each time step.

Parameters:

Name Type Description Default
n_periods int

Number of periods to generate.

required
n_samples_per_period int

Number of samples per period.

required
Source code in hamilflow/models/harmonic_oscillator.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def __call__(self, n_periods: int, n_samples_per_period: int) -> pd.DataFrame:
    """Generate time series data for the harmonic oscillator.

    Returns a list of floats representing the displacement at each time step.

    :param n_periods: Number of periods to generate.
    :param n_samples_per_period: Number of samples per period.
    """
    time_delta = self.system.period / n_samples_per_period
    time_steps = np.arange(0, n_periods * n_samples_per_period) * time_delta

    data = self._x(time_steps)

    return pd.DataFrame({"t": time_steps, "x": data})

HarmonicOscillatorIC ¤

Bases: BaseModel

The initial condition for a harmonic oscillator.

Attributes:

Name Type Description
x0 float

the initial displacement

v0 float

the initial velocity

phi float

initial phase

Source code in hamilflow/models/harmonic_oscillator.py
61
62
63
64
65
66
67
68
69
70
71
class HarmonicOscillatorIC(BaseModel):
    """The initial condition for a harmonic oscillator.

    :cvar x0: the initial displacement
    :cvar v0: the initial velocity
    :cvar phi: initial phase
    """

    x0: float = Field(default=1.0)
    v0: float = Field(default=0.0)
    phi: float = Field(default=0.0)

HarmonicOscillatorSystem ¤

Bases: BaseModel

The params for the harmonic oscillator.

Attributes:

Name Type Description
omega float

angular frequency of the harmonic oscillator

zeta float

damping ratio

Source code in hamilflow/models/harmonic_oscillator.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class HarmonicOscillatorSystem(BaseModel):
    """The params for the harmonic oscillator.

    :cvar omega: angular frequency of the harmonic oscillator
    :cvar zeta: damping ratio
    """

    omega: float = Field()
    zeta: float = Field(default=0.0)

    @computed_field  # type: ignore[misc]
    @cached_property
    def period(self) -> float:
        """Period of the oscillator."""
        return 2 * np.pi / self.omega

    @computed_field  # type: ignore[misc]
    @cached_property
    def frequency(self) -> float:
        """Frequency of the oscillator."""
        return 1 / self.period

    @computed_field  # type: ignore[misc]
    @cached_property
    def type(
        self,
    ) -> Literal["simple", "under_damped", "critical_damped", "over_damped"]:
        """Which type of harmonic oscillators."""
        if self.zeta == 0:
            return "simple"
        elif self.zeta < 1:
            return "under_damped"
        elif self.zeta == 1:
            return "critical_damped"
        else:
            return "over_damped"

    @field_validator("zeta")
    @classmethod
    def _check_zeta_non_negative(cls, v: float) -> float:
        if v < 0:
            msg = f"Value of zeta should be positive: {v=}"
            raise ValueError(msg)

        return v

frequency: float cached property ¤

Frequency of the oscillator.

period: float cached property ¤

Period of the oscillator.

type: Literal['simple', 'under_damped', 'critical_damped', 'over_damped'] cached property ¤

Which type of harmonic oscillators.

SimpleHarmonicOscillator ¤

Bases: HarmonicOscillatorBase

Generate time series data for a simple harmonic oscillator.

In a one dimensional world, a mass \(m\), driven by a force \(F=-kx\), is described as

\[ \begin{align} F &= - k x \\ F &= m a \end{align} \]

The mass behaves like a simple harmonic oscillator.

In general, the solution to a simple harmonic oscillator is

\[ x(t) = A \cos(\omega t + \phi), \]

where \(\omega\) is the angular frequency, \(\phi\) is the initial phase, and \(A\) is the amplitude.

To use this generator,

params = {"omega": omega}

ho = SimpleHarmonicOscillator(params=params)

df = ho(n_periods=1, n_samples_per_period=10)

df will be a pandas dataframe with two columns: t and x.

Source code in hamilflow/models/harmonic_oscillator.py
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
class SimpleHarmonicOscillator(HarmonicOscillatorBase):
    r"""Generate time series data for a [simple harmonic oscillator](https://en.wikipedia.org/wiki/Harmonic_oscillator).

    In a one dimensional world, a mass $m$, driven by a force $F=-kx$, is described as

    $$
    \begin{align}
    F &= - k x \\
    F &= m a
    \end{align}
    $$

    The mass behaves like a simple harmonic oscillator.

    In general, the solution to a simple harmonic oscillator is

    $$
    x(t) = A \cos(\omega t + \phi),
    $$

    where $\omega$ is the angular frequency, $\phi$ is the initial phase, and $A$ is the amplitude.


    To use this generator,

    ```python
    params = {"omega": omega}

    ho = SimpleHarmonicOscillator(params=params)

    df = ho(n_periods=1, n_samples_per_period=10)
    ```

    `df` will be a pandas dataframe with two columns: `t` and `x`.
    """

    def __init__(
        self,
        system: Mapping[str, float],
        initial_condition: Mapping[str, float] | None = None,
    ) -> None:
        super().__init__(system, initial_condition)
        if self.system.type != "simple":
            msg = f"System is not a Simple Harmonic Oscillator: {self.system}"
            raise ValueError(
                msg,
            )

    def _x(self, t: "Sequence[float] | npt.ArrayLike") -> np.ndarray:
        r"""Solution to simple harmonic oscillators.

        $$
        x(t) = x_0 \cos(\omega t + \phi).
        $$
        """
        return self.initial_condition.x0 * np.cos(
            self.system.omega * np.asarray(t) + self.initial_condition.phi,
        )